10 Maret 2009

Subnetting Pada Alamat Kelas C

Pada alamat kelas C, hanya tersedia 8 bit untuk mendefinisikan host. Subnet mask kelas C yang mungkin adalah sebagai berikut :

Binary;Desimal; Singkatan

10000000; 128; /25 (tidak valid)
11000000; 192; /26
11100000; 224; /27
11110000; 240; /28
11111000; 248; /29
11111100; 252; /30
11111110; 254; /31 (tidak valid)

Untuk contoh perhitungan subnetting, saya menggunakan 255.255.255.192

192 = 11000000

Pada bilangan binary diatas (11000000), bit 1 mewakili bit-bit subnet dan bit 0 mewakili bit-bit host yang tersedia pada setiap subnet. 192 memberikan 2 bit untuk subnetting dan 6 bit untuk mendefinisikan host pada masing-masing subnet.

Apa saja subnet-subnetnya? Karena bit-bit subnetnya tidak boleh semuanya off (bernilai 0 semua) atau on (bernilai 1 semua) pada saat yang bersamaan, maka ada 2 subnet mask yang valid.

01000000 = 64
10000000 = 128

Alamat dari host yang valid akan didefinisikan sebagai nomor-nomor diantara subnet-subnet tersebut, dikurangi dengan dua nomor; 1)nomor yang semua bit host bernilai 0 (off) dan, 2) nomor dengan bit host bernilai 1 (on).

Untuk menentukan host-host ini, pertama kita harus menentukan subnet dengan membuat semua bit host off, lalu membuat semua bit host on untuk mencari alamat broadcast untuk subnet tersebut. Host yang valid harus berada diantara kedua nomor atau alamat tersebut.

Subnet 64
01000000 = 64 (Network)
01000001 = 65 (Host pertama yang valid)
01111110 = 126 (Host terakhir yang valid)
01111111 = 127 (Broadcast)

Subnet 128
10000000 = 128 (Network)
10000001 = 129 (Host pertama yang valid)
10111110 = 191 (Host terakhir yang valid)
10111111 = 192 (Broadcast)

Mungkin kelihatan agak rumit yah, sekarang kita coba cara cepat dan gampang untuk menghitung subnet. Pada bagian ini penting sekali untuk menghafalkan hasil-hasil pemangkatan angka 2.
Berikut cara cepatnya :

*

Jumlah subnet : 2^x – 2 = jumlah subnet. X adalah jumlah bit 1 disubnet mask. Contoh disubnet mask 11000000, jumlah bit 1 ada 2, maka jumlah subnet 2^2 – 2 = 2 subnet.
*

Jumlah Host : 2^y – 2 = jumlah host persubnet. Y adalah jumlah bit dibagian host atau bit 0. Contoh disubnet mask 11000000, jumlah bit 0 ada 6, maka jumlah host persubnet adalah 2^6 – 2 = 62 host.
*

Subnet yang valid : 256 – subnet mask = ukuran blok atau bilangan dasar. Contoh, 256 – 192 = 64. Maka 64 adalah blok size dan subnet pertama adalah 64. Subnet berikutnya adalah bilangan dasar ditambah dirinya sendiri, atau 64 + 64 = 128 (sebnet kedua). Teruslah ditambah bilangan dasar pada dirinya sendiri mencapai nilai dari subnet mask, yang bukan merupakan subnet yang valid karena semua bit-nya adalah 1 (on).
*

Alamat broadcast untuk setiap subnet : Alamat broadcast adalah semua bit host dibuat menjadi 1, yang mana merupakan nomor yang berada tepat sebelum subnet berikutnya.
*

Host yang valid : Host yang valid adalah nomor diantara subnet-subnet dengan menghilangkan semua 0 dan semua 1.

Sampai disini gimana…? Masih belum paham…?
OK. Untuk memuaskan hasrat narsis Anda (hehehe), saya akan memberikan beberapa contoh soal.

Alamat network = 192.168.10.0; subnet mask = 255.255.255.240;

* Jumlah Subnet ? 240 = 11110000 dalam binary, 2^4 -2 = 14 subnet yang valid.
* Host ? bit host = 2^4 – 2 = 14 host yang valid.
*

Subnet yang valid ? 256 – 240 = 16; 16 + 16 = 32; 32 + 16 = 48; 48 + 16 = 64; 64 + 16 = 80; 80 + 16 = 96; 96 + 16 = 112; 112 + 16 = 128; 128 + 16 = 144; 144 + 16 = 160; 160 + 16 = 176; 176 + 16 = 192; 192 + 16 = 208; 208 + 16 = 224; 224 + 16 = 240; stop. Nah,,, subnet yang valid adalah 16, 32, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224. 240 tidak termasuk karena sudah merupakan subnet masknya kita.

"Kabel UTP"

Pengertian Kabel UTP Kabel UTP (Unshielded Twisted Pair ) merupakan salah satu jenis kabel yang paling banyak digunakan untuk membuat jaringan atau network komputer (komputer, hub, switch, router). Kabel ini berisi empat pasang (pair) kabel yang tiap pair-nya dipilin (twisted) atau disusun spiral atau saling berlilitan . Keempat pasang kabel (delapan kabel) yang menjadi isi kabel berupa kabel tembaga tunggal yang berisolator . Kabel ini tidak dilengkapi dengan pelindung (unshilded) sehingga kurang tahan terhadap interferensi elektromagnetik. Yang dimaksud dengan kabel UTP adalah hanya kabelnya, sedangkan kepala kabelnya adalah 8 position modular connectors (8P8C) yang biasa disebut RJ-45 (RJ=register jack). Kategori Kabel UTP Kabel UTP sebetulnya ada beberapa kategori yaitu dari kategori 1 - 7 yang sering digunakan untuk LAN biasanya kategori 5 atau sering disebut cat-5. Berikut ini kegunaan dari kabel kategori 1 - 7 . - Kategori 1 : merupakan kabel UTP dengan kualitas transmisi terendah, yang didesain untuk mendukung koneksi atau komunikasi suara analog saja. Kabel Cat1 digunakan sebelum tahun 1983 untuk menghubungkan telefon analog Plain Old Telephone Service (POTS) dan ISDN. Karakteristik kelistrikan dari kabel Cat1 membuatnya kurang sesuai untuk digunakan sebagai kabel untuk mentransmisikan data digital di dalam jaringan komputer, dan karena itulah tidak pernah digunakan untuk tujuan tersebut. 2 - Kategori 2 : adalah kabel UTP dengan kualitas transmisi yang lebih baik dibandingkan dengan kabel UTP Category 1 (Cat1), yang didesain untuk mendukung komunikasi data dan suara digital. Kabel ini dapat mentransmisikan data hingga 4 megabit per detik (4Mbps). Seringnya, kabel ini digunakan untuk menghubungkan node-node dalam jaringan dengan teknologi Token Ring network dan protocol localtalk (Apple) dari IBM. Karakteristik kelistrikan dari kabel Cat2 kurang cocok jika digunakan sebagai kabel jaringan masa kini. - Kategori 3 : adalah kabel UTP dengan kualitas transmisi yang didesain untuk data network dengan frequensi hingga 16Mhz dan lebih populer untuk protocol ethernet dengan kecepatan data hingga 10 Mbps. Kabel UTP Cat3 menggunakan kawat-kawat tembaga 24-gauge dalam konfigurasi 4 pasang kawat yang dipilin (twisted-pair) yang dilindungi oleh insulasi. Cat3 merupakan kabel yang memiliki kemampuan terendah (jika dilihat dari perkembangan teknologi Ethernet), karena memang hanya mendukung jaringan 10BaseT saja. Seringnya, kabel jenis ini digunakan oleh jaringan IBM Token Ring yang berkecepatan 4 megabit per detik, sebagai pengganti Cat2. - Kategori 4 : adalah kabel UTP dengan kualitas transmisi yang lebih baik dibandingkan dengan kabel UTP Category 3 (Cat3), yang didesain untuk mendukung komunikasi data dan suara hingga kecepatan 16 megabit per detik, sehingga dapat digunakan untuk protocol 16 Mbps token ring (IBM) dengan kecepatan data hingga 20 Mbps. Kabel ini menggunakan kawat tembaga 22-gauge atau 24-gauge dalam konfigurasi empat pasang kawat yang dipilin (twisted pair) yang dilindungi oleh insulasi. Kabel ini dapat mendukung jaringan Ethernet 10BaseT, tapi seringnya digunakan pada jaringan IBM Token Ring 16 megabit per detik. Tabel berikut menyebutkan beberapa karakteristik yang dimiliki oleh kabel UTP kategory 4 pada beberapa frekuensi. 3 Karakteristik Nilai pada frekuensi 10 MHz Nilai pada frekuensi 20 MHz Attenuation 20 dB/1000 kaki 31 dB/1000 kaki Near-end Cross- Talk 41 dB/1000 kaki 36 dB/1000 kaki Resistansi 28.6 Ohm/1000 kaki 28.6 Ohm/1000 kaki Impendansi 100 Ohm (±15%) 100 Ohm (±15%) Kapasitansi 18 picoFarad/kaki 18 picoFarad/kaki - Kategori : adalah kabel dengan kualitas transmisi yang jauh lebih baik dibandingkan dengan kabel UTP kategory 4, yang didesain untuk mendukung komunikasi data serta suara pada kecepatan hingga 100 megabit per detik(100Mbps). Kabel ini menggunakan kawat tembaga dalam konfigurasi empat pasang kawat yang dipilin (twisted pair) dan dilindungi oleh insulasi. Kabel ini telah distandardisasi oleh Electronic Industries Alliance (EIA) dan Telecommunication Industry Association (TIA). Kabel Cat5 dapat mendukung jaringan Ethernet (10BaseT), Fast Ethernet (100BaseT), hingga Gigabit Etheret (1000BaseT). Kabel ini adalah kabel paling populer, mengingat kabel serat optik yang lebih baik harganya hampir dua kali lipat lebih mahal dibandingkan dengan kabel Cat5. Karena memiliki karakteristik kelistrikan yang lebih baik, kabel Cat5 adalah kabel yang disarankan untuk semua instalasi jaringan. 4 Tabel berikut menyebutkan beberapa karakteristik yang dimiliki oleh kabel UTP kategory 5 pada beberapa frekuensi. Karakteristik Nilai pada frekuensi 10 MHz Nilai pada frekuensi 100 MHz Attenuation 20 dB/1000 kaki 22 dB/1000 kaki Near-end Crosstalk 47 dB/1000 kaki 32.3 dB/1000 kaki Resistansi 28.6 Ohm/1000 kaki 28.6 Ohm/1000 kaki Impendansi 100 Ohm (±15%) 100 Ohm (±15%) Kapasitansi 18 picoFarad/kaki 18 picoFarad/kaki Structural return loss 16 Db 16 dB Delay skew 45 nanodetik/100 meter 45 nanodetik/100 meter - Kategori 5e: Frequensi dan kecepatan sama dengan cat-5 tetapi lebih support gigabyte ethernet network. Kabel kategori 5e disebut juga Enhanced Category 5, karena kabel ini merupakan versi perbaikan dari kabel UTP Cat5, yang menawarkan kemampuan yang lebih baik dibandingkan dengan Cat5 biasa. Kabel ini mampu mendukung frekuensi hingga 250 MHz, yang direkomendasikan untuk penggunaan dalam jaringan Gigabit Ethernet, meskipun menggunaan kabel UTP Category 6 lebih disarankan untuk mencapai kinerja tertinggi. 5 Pengabelan UTP Category 5: Pengabelan UTP Category 5 Straight Pengabelan UTP Category 5 Crossover Dalam menghubungkan jaringan Ethernet dengan menggunakan kabel UTP Category 5, terdapat dua strategi pengabelan, yakni CrossOver cable dan Straight-through cable. Perbedaan Cross Over kabel dan Straight-trough cable. _ Kabel Crossover digunakan untuk menghubungkan dua perangkat yang sama NIC dengan NIC, router dengan router danhub dengan hub. Kabel CrissOver T568A vs T568A atau T568B vs T568B (lebih sering dipakai), kedua ujung susunannya: putihhijau-hijau-putihoranye-biru-putihbiru-oranye-putihcoklat-coklat. _ Kabel Straight-through digunakan untuk menghubungkan NIC dengan hub atau NIC dengan switch, pc dengan router/hub/switch, dan hub dengan router. Menggunakan T568A vs T568B. Satu ujung susunannya: putihoranye-oranyeputihhijau- biru-putihbiru-hijau-putihcoklat-coklat dan ujung lainnya susunannya: putihhijau-hijau-putihoranye-biru-putihbiru-oranye-putihcoklat-coklat. Gambar kabel kategori 5e 6 - Kategori 6: Memiliki kecepatan up to 250Mbps atau lebih dari dua kali cat-5 dan cat- 5e. Gambar kabel kategori 6. - Kategori 6a: Kabel masa depan untuk kecepatan up to 10Gbps. - Kategori 7: di desain untuk bekerja pada frequensi up to 600Mhz Penggunaan enggunaan Jenis enis Kabel abel Kabel Cat 5 biasa digunakan untuk menghubungkan antara hub/router/switch ke PC karena koneksi ini tidak memakai traffic data yang besar sehingga 10 MBps sudah cukup. Sedangkan Cat 6 digunakan untuk menghubungkan antar hub/router/switch karena hubungan ini biasanya melibatkan banyak PC sehingga traffic data akan menjadi lebih besar pula. Analoginya seperti jalan, cat 6 diibaratkan jalan raya (4 jalur), sedangkan cat 5 seperti jalan biasa (2 jalur). Sedangkan yang membedakan kapan menggunakan kabel straight dan kapan menggunakan kabel cross adalah mesin apa yang ingin kita hubungkan. Bila PC ke router gunakan kabel straight, kalau PC ke PC gunakan kabel cross. Jenis K enis Kabel abel _ Berdasarkan kapasitas 10BASE-T : 10 Mbps (mega bit per second) Cat 5 (Category 5) / 100BASE-TX : 100 Mbps Cat 6 (Category 6) / 1000BASE-T : 1000 Mbps (1 Gbps) 7 _ Berdasarkan urutan kabel ada dua macam susunan kabel: 1. TIA/EIA-568-A (T568A) putihhijau-hijau-putihoranye-biru-putihbiru-oranye-putihcoklat-coklat 2. TIA/EIA-568-B (T568B)putihoranye-oranye-putihhijau-biru-putihbiru-hijau-putihcoklat-coklat

"Cara Installasi Linux Debian"

Sekarang kalian siap untuk memulai penginstallan.

1. Waktu booting awal, akan terdapat tulisan enter to boot. Tekan Enter untuk memulainya.

2. Choose your language
Pilih saja bahasa English biar mudah dipahami. Itung-itung belajar buat TOEFL :)

3. Choose your country, territory or area
Buat negara kita tercinta, pilih Other, kemudian Indonesia.

4. Keymap to use
Pake defaultnya aja. Jadi langsung tekan Enter.

5. Hostname
Tuliskan hostname untuk menamai komputer kalian, ato juga sebagai root. Defaultnya debian.

6. Domain
Isi domain untuk komputer kalian. Di sini aku isi computer.ee.its.ac.id.

7. Partitioning method
Di sini adalah proses utama yang sangat mematikan. Karena jika salah nge-‘click’, partisi Windows kalian akan ilang(!!!). Ni aku kasih tau sedikit cara menanganinya :)
Pilih Manually edit partition table
Kalian akan disuruh untuk mengotak-atik partisi HD.

8. Partition disks
Pilihlah partisi reiserFS yang telah kalian buat sebelumnya. Hapus partisi tersebut dengan memilih Delete the partition. Kemudian pilih kembali partisi tersebut untuk membuat partisi baru (Create a new partition) dan tentukan ukuran dari partisinya.
Langkah selanjutnya, pilih reiserFS pada Use as, format partisi (Format the partition), Mount point : /, Bootable flag : on. Berikutnya Done setting up the partition, dan akhiri dengan Finish partitioning and write changes to disk.

Use as : ReiserFS
Format the partition : yes
Mount point : /
Bootable flag : on
Done setting up the partition

Finish partitioning and write changes to disk

9. Select a city in your fine zone
Pemilihan ini digunakan untuk memilih time zone daerah kita. Kalo GMT+7 pilih Jakarta

10. Root password
Digunakan untuk password root.

11. Full name for the new user, Username for your account, User password
Digunakan untuk membuat nama user beserta passwordnya.

12. Use a network mirror
Untuk pertanyaan ini jawab aja No.

13. Choose software to install
Pilih defaultnya saja

Standard system

14. Install the GRUB boot loader to the master boot record?
GRUB (Grand Unified Bootloader) digunakan untuk memilih OS (Operating System) yang dijalankan pada saat pertama kali dinyalakan. Oleh karena itu, jawablah Yes agar bisa memilih OS yang diinginkan.

15. Installation complete
Restart!!!!

Penginstallan Linux Debian Etch selesai sudah.

Domain Name Server

Sejarah singkat DNS

Penggunaan nama sebagai pengabstraksi alamat mesin di sebuah jaringan komputer yang lebih dikenal oleh manusia mengalahkan TCP/IP, dan kembali ke jaman ARPAnet. Dahulu, setiap komputer di jaringan komputer menggunakan file HOSTS.TXT dari SRI (sekarang SIR International), yang memetakan sebuah alamat ke sebuah nama (secara teknis, file ini masih ada - sebagian besar sistem operasi modern menggunakannya baik secara baku maupun melalui konfigurasi, dapat melihat Hosts file untuk menyamakan sebuah nama host menjadi sebuah alamat IP sebelum melakukan pencarian via DNS). Namun,, sistem tersebut diatas mewarisi beberapa keterbatasan yang mencolok dari sisi prasyarat, setiap saat sebuah alamat komputer berubah, setiap sistem yang hendak berhubungan dengan komputer tersebut harus melakukan update terhadap file Hosts.

Dengan berkembangnya jaringan komputer, membutuhkan sistem yang bisa dikembangkan: sebuah sistem yang bisa mengganti alamat host hanya di satu tempat, host lain akan mempelajari perubaha tersebut secara dinamis. Inilah DNS.
Paul Mockapetris menemukan DNS di tahun 1983; spesifikasi asli muncul di RFC 882 dan 883. Tahun 1987, penerbitan RFC 1034 dan RFC 1035 membuat update terhadap spesifikasi DNS. Hal ini membuat RFC 882 dan RFC 883 tidak berlaku lagi. Beberapa RFC terkini telah memproposikan beberapa tambahan dari protokol inti DNS.

Teori bekerja DNS

Para Pemain Inti

Pengelola dari sistem DNS terdiri dari tiga komponen:

* DNS resolver, sebuah program klien yang berjalan di komputer pengguna, yang membuat permintaan DNS dari program aplikasi.
* recursive DNS server, yang melakukan pencarian melalui DNS sebagai tanggapan permintaan dari resolver, dan mengembalikan jawaban kepada para resolver tersebut;
* authoritative DNS server yang memberikan jawaban terhadap permintaan dari recursor, baik dalam bentuk sebuah jawaban, maupun dalam bentuk delegasi (misalkan: mereferensikan ke authoritative DNS server lainnya)

Pengertian beberapa bagian dari nama domain

Sebuah nama domain biasanya terdiri dari dua bagian atau lebih (secara teknis disebut label), dipisahkan dengan titik.

Label paling kanan menyatakan top-level domain - domain tingkat atas/tinggi (misalkan, alamat www.wikipedia.org memiliki top-level domain org).

Setiap label di sebelah kirinya menyatakan sebuah sub-divisi atau subdomain dari domain yang lebih tinggi. Catatan: "subdomain" menyatakan ketergantungan relatif, bukan absolut. Contoh: wikipedia.org merupakan subdomain dari domain org, dan id.wikipedia.org dapat membentuk subdomain dari domain wikipedia.org (pada prakteknya, id.wikipedia.org sesungguhnya mewakili sebuah nama host - lihat dibawah). Secara teori, pembagian seperti ini dapat mencapai kedalaman 127 level, dan setiap label dapat terbentuk sampai dengan 63 karakter, selama total nama domain tidak melebihi panjang 255 karakter. Tetapi secara praktek, beberapa pendaftar nama domain (domain name registry) memiliki batas yang lebih sedikit.

Terakhir, bagian paling kiri dari bagian nama domain (biasanya) menyatakan nama host. Sisa dari nama domain menyatakan cara untuk membangun jalur logis untuk informasi yang dibutuhkan; nama host adalah tujuan sebenarnya dari nama sistem yang dicari alamat IP-nya. Contoh: nama domain www.wikipedia.org memiliki nama host "www".

DNS memiliki kumpulan hirarki dari DNS servers. Setiap domain atau subdomain memiliki satu atau lebih authoritative DNS Servers (server DNS otorisatif) yang mempublikasikan informas tentang domain tersebut dan nama-nama server dari setiap domain di-"bawah"-nya. Pada puncak hirarki, terdapat root servers- induk server nama: server yang ditanyakan ketika mencari (menyelesaikan/resolving) dari sebuah nama domain tertinggi (top-level domain).

Sebuah contoh dari teori rekursif DNS

Sebuah contoh mungkin dapat memperjelas proses ini. Andaikan ada aplikasi yang memerlukan pencarian alamat IP dari www.wikipedia.org. Aplikasi tersebut bertanya ke DNS recursor lokal.

Sebelum dimulai, recursor harus mengetahui dimana dapat menemukan root nameserver; administrator dari recursive DNS server secara manual mengatur (dan melakukan update secara berkala) sebuah file dengan nama root hints zone (panduan akar DNS) yang menyatakan alamat-alamt IP dari para server tersebut.

Proses dimulai oleh recursor yang bertanya kepada para root server tersebut - misalkan: server dengan alamat IP "198.41.0.4" - pertanyaan "apakah alamat IP dari www.wikipedia.org?"

Root server menjawab dengan sebuah delegasi, arti kasarnya: "Saya tidak tahu alamat IP dari www.wikipedia.org, tapi saya "tahu" bahwa server DNS di 204.74.112.1 memiliki informasi tentang domain org."

Recursor DNS lokal kemudian bertanya kepada server DNS (yaitu: 204.74.112.1) pertanyaan yang sama seperti yang diberikan kepada root server. "apa alamat IP dari www.wikipedia.org?". (umumnya) akan didapatkan jawaban yang sejenis, "saya tidak tahu alamat dari www.wikipedia.org, tapi saya "tahu" bahwa server 207.142.131.234 memiliki informasi dari domain wikipedia.org."

Akhirnya, pertanyaan beralih kepada server DNS ketiga (207.142.131.234), yang menjawab dengan alamat IP yang dibutuhkan.

Proses ini menggunakan pencarian rekursif (recursion / recursive searching).

Pengertian pendaftaran domain dan glue records

Membaca contoh diatas, Anda mungkin bertanya: "bagaimana caranya DNS server 204.74.112.1 tahu alamat IP mana yang diberikan untuk domain wikipedia.org?" Pada awal proses, kita mencatat bahwa sebuah DNS recursor memiliki alamat IP dari para root server yang (kurang-lebih) didata secara explisit (hard coded). Mirip dengan hal tersebut, server nama (name server) yang otoritatif untuk top-level domain mengalami perubahan yang jarang.

Namun, server nama yang memberikan jabawan otorisatif bagi nama domain yang umum mengalami perubahan yang cukup sering. Sebagai bagian dari proses pendaftaran sebuah nama domain (dan beberapa waktu sesudahnya), pendaftar memberikan pendaftaran dengan server nama yang akan mengotorisasikan nama domain tersebut; maka ketika mendaftar wikipedia.org, domain tersebut terhubung dengan server nama gunther.bomis.com dan zwinger.wikipedia.org di pendaftar .org. Kemudian, dari contoh di atas, ketika server dikenali sebagai 204.74.112.1 menerima sebuah permintaan, DNS server memindai daftar domain yang ada, mencari wikipedia.org, dan mengembalikan server nama yang terhubung dengan domain tersebut.

Biasanya, server nama muncul berdasarkan urutan nama, selain berdasarkan alamat IP. Hal ini menimbulkan string lain dari permintaan DNS untuk menyelesaikan nama dari server nama; ketika sebuah alamat IP dari server nama mendapatkan sebuah pendaftaran di zona induk, para programmer jaringan komputer menamakannya sebuah glue record (daftar lekat???)

DNS dalam praktek

Ketika sebuah aplikasi (misalkan web broswer), hendak mencari alamat IP dari sebuah nama domain, aplikasi tersebut tidak harus mengikuti seluruh langkah yang disebutkan dalam teori diatas. Kita akan melihat dulu konsep caching, lalu mengertikan operasi DNS di "dunia nyata".

Caching dan masa hidup (caching and time to live)

Karena jumlah permintaan yang besar dari sistem seperti DNS, perancang DNS menginginkan penyediaan mekanisme yang bisa mengurangi beban dari masing-masing server DNS. Rencana mekanisnya menyarankan bahwa ketika sebuah DNS resolver (klien) menerima sebuah jawaban DNS, informasi tersebut akan di cache untuk jangka waktu tertentu. Sebuah nilai (yang di-set oleh administrator dari server DNS yang memberikan jawaban) menyebutnya sebagai time to live (masa hidup), atau TTL yang mendefinisikan periode tersebut. Saat jawaban masuk ke dalam cache, resolver akan mengacu kepada jawaban yang disimpan di cache tersebut; hanya ketika TTL usai (atau saat administrator mengosongkan jawaban dari memori resolver secara manual) maka resolver menghubungi server DNS untuk informasi yang sama.

Waktu propagasi (propagation time)

Satu akibat penting dari arsitektur tersebar dan cache adalah perubahan kepada suatu DNS tidak selalu efektif secara langsung dalam skala besar/global. Contoh berikut mungkin akan menjelaskannya: Jika seorang administrator telah mengatur TTL selama 6 jam untuk host www.wikipedia.org, kemudian mengganti alamat IP dari www.wikipedia.org pada pk 12:01, administrator harus mempertimbangkan bahwa ada (paling tidak) satu individu yang menyimpan cache jawaban dengan nilai lama pada pk 12:00 yang tidak akan menghubungi server DNS sampai dengan pk 18:00. Periode antara pk 12:00 dan pk 18:00 dalam contoh ini disebut sebagai waktu propagasi (propagation time), yang bisa didefiniskan sebagai periode waktu yang berawal antara saat terjadi perubahan dari data DNS, dan berakhir sesudah waktu maksimum yang telah ditentukan oleh TTL berlalu. Ini akan mengarahkan kepada pertimbangan logis yang penting ketika membuat perubahan kepada DNS: tidak semua akan melihat hal yang sama seperti yang Anda lihat. RFC1537 dapat membantu penjelasan ini.

DNS di dunia nyata

Di dunia nyata, user tidak berhadapan langsung dengan DNS resolver - mereka berhadapan dengan program seperti web brower (Mozilla Firefox, Safari, Opera, Internet Explorer, Netscape, Konqueror dan lain-lain dan klien mail (Outlook Express, Mozilla Thunderbird dan lain-lain). Ketika user melakukan aktivitas yang meminta pencarian DNS (umumnya, nyaris semua aktivitas yang menggunakan Internet), program tersebut mengirimkan permintaan ke DNS Resolver yang ada di dalam sistem operasi.

DNS resolver akan selalu memiliki cache (lihat diatas) yang memiliki isi pencarian terakhir. Jika cache dapat memberikan jawaban kepada permintaan DNS, resolver akan menggunakan nilai yang ada di dalam cache kepada program yang memerlukan. Kalau cache tidak memiliki jawabannya, resolver akan mengirimkan permintaan ke server DNS tertentu. Untuk kebanyakan pengguna di rumah, Internet Service Provider(ISP) yang menghubungkan komputer tersebut biasanya akan menyediakan server DNS: pengguna tersebut akan mendata alamat server secara manual atau menggunakan DHCP untuk melakukan pendataan tersebut.

Jika administrator sistem telah mengkonfigurasi sistem untuk menggunakan server DNS mereka sendiri, DNS resolver umumnya akan mengacu ke server nama mereka. Server nama ini akan mengikuti proses yang disebutkan di Teori DNS, baik mereka menemukan jawabannya maupun tidak. Hasil pencarian akan diberikan kepada DNS resolver; diasumsikan telah ditemukan jawaban, resolver akan menyimpan hasilnya di cache untuk penggunaan berikutnya, dan memberikan hasilnya kepada software yang meminta pencarian DNS tersebut.

Sebagai bagian akhir dari kerumitan ini, beberapa aplikasi seperti web browser juga memiliki DNS cache mereka sendiri, tujuannya adalah untuk mengurangi penggunaan referensi DNS resolver, yang akan meningkatkan kesulitan untuk melakukan debug DNS, yang menimbulkan kerancuan data yang lebih akurat. Cache seperti ini umumnya memiliki masa yang singkat dalam hitungan 1 menit.

Penerapan DNS lainnya

Sistem yang dijabarkan diatas memberikan skenario yang disederhanakan. DNS meliputi beberapa fungsi lainnya:

Nama host dan alamat IP tidak berarti terhubung secara satu-banding-satu. Banyak nama host yang diwakili melalui alamat IP tunggal: gabungan dengan pengasuhan maya (virtual hosting), hal ini memungkinkan satu komputer untuk malayani beberapa situs web. Selain itu, sebuah nama host dapat mewakili beberapa alamat IP: ini akan membantuk toleransi kesalahan (fault tolerance dan penyebaran beban (load distribution), juga membantu suatu situs berpindah dari satu lokasi fisik ke lokasi fisik lainnya secara mudah.

Ada cukup banyak kegunaan DNS selain menerjemahkan nama ke alamat IP. Contoh:, agen pemindahan surat Mail transfer agents(MTA) menggunakan DNS untuk mencari tujuan pengiriman E-mail untuk alamat tertentu. Domain yang menginformasikan pemetaan exchange disediakan melalui rekod MX (MX record) yang meningkatkan lapisan tambahan untuk toleransi kesalahan dan penyebaran beban selain dari fungsi pemetaan nama ke alamat IP.

Kerangka Peraturan Pengiriman (Sender Policy Framework) secara kontroversi menggunakan keuntungan jenis rekod DNS, dikenal sebagai rekod TXT.

Menyediakan keluwesan untuk kegagalan komputer, beberapa server DNS memberikan perlindungan untuk setiap domain. Tepatnya, tigabelas server akar (root servers) digunakan oleh seluruh dunia. Program DNS maupun sistem operasi memiliki alamat IP dari seluruh server ini. Amerika Serikat memiliki, secara angka, semua kecuali tiga dari server akar tersebut. Namun, dikarenakan banyak server akar menerapkan anycast, yang memungkinkan beberapa komputer yang berbeda dapat berbagi alamat IP yang sama untuk mengirimkan satu jenis services melalui area geografis yang luas, banyak server yang secara fisik (bukan sekedar angka) terletak di luar Amerika Serikat.

DNS menggunanakn TCP dan UDP di port komputer 53 untuk melayani permintaan DNS. Nyaris semua permintaan DNS berisi permintaan UDP tunggal dari klien yang ddikuti oleh jawaban UDP tunggal dari server. Umumnya TCP ikut terlibat hanya ketika ukuran data jawaban melebihi 512 byte, atau untuk pertukaaran zona DNS zone transfer

Jenis-jenis catatan DNS

Beberapa kelompok penting dari data yang disimpan di dalam DNS adalah sebagai berikut:

* A record atau catatan alamat memetakan sebuah nama host ke alamat IP 32-bit (untuk IPv4).
* AAAA record atau catatan alamat IPv6 memetakan sebuah nama host ke alamat IP 128-bit (untuk IPv6).
* CNAME record atau catatan nama kanonik membuat alias untuk nama domain. Domain yang di-alias-kan memiliki seluruh subdomain dan rekod DNS seperti aslinya.
* '[MX record]] atau catatan pertukaran surat memetakan sebuah nama domain ke dalam daftar mail exchange server untuk domain tersebut.
* PTR record atau catatan penunjuk memetakan sebuah nama host ke nama kanonik untuk host tersebut. Pembuatan rekod PTR untuk sebuah nama host di dalam domain in-addr.arpa yang mewakili sebuah alamat IP menerapkan pencarian balik DNS (reverse DNS lookup) untuk alamat tersebut. Contohnya (saat penulisan / penerjemahan artikel ini), www.icann.net memiliki alamat IP 192.0.34.164, tetapi sebuah rekod PTR memetakan ,,164.34.0.192.in-addr.arpa ke nama kanoniknya: referrals.icann.org.
* NS record atau catatan server nama memetakan sebuah nama domain ke dalam satu daftar dari server DNS untuk domain tersebut. Pewakilan bergantung kepada rekod NS.
* SOA record atau catatan otoritas awal (Start of Authority) mengacu server DNS yang mengediakan otorisasi informasi tentang sebuah domain Internet.
* SRV record adalah catatan lokasi secara umum.
* Catatan TXT mengijinkan administrator untuk memasukan data acak ke dalam catatan DNS; catatan ini juga digunakan di spesifikasi Sender Policy Framework.

Jenis catatan lainnya semata-mata untuk penyediaan informasi (contohnya, catatan LOC memberikan letak lokasi fisik dari sebuah host, atau data ujicoba (misalkan, catatan WKS memberikan sebuah daftar dari server yang memberikan servis yang dikenal (well-known service) seperti HTTP atau POP3 untuk sebuah domain.
Nama domain yang diinternasionalkan

Nama domain harus menggunakan satu sub-kumpulan dari karakter ASCII, hal ini mencegah beberapa bahasa untuk menggunakan nama maupun kata lokal mereka. ICANN telah menyetujui Punycode yang berbasiskan sistem IDNA, yang memetakan string Unicode ke karakter set yang valid untuk DNS, sebagai bentuk penyelesaian untuk masalah ini, dan beberapa registries sudah mengadopsi metode IDNS ini.

Perangkat lunak DNS

Beberapa jenis perangakat lunak DNS menerapkan metode DNS, beberapa diantaranya:

* BIND (Berkeley Internet Name Domain)
* djbdns (Daniel J. Bernstein's DNS)
* MaraDNS
* QIP (Lucent Technologies)
* NSD (Name Server Daemon)
* PowerDNS
* Microsoft DNS (untuk edisi server dari Windows 2000 dan Windows 2003)

Utiliti berorientasi DNS termasuk:

* dig (the domain information groper)

Pengguna legal dari domain

Pendaftar (registrant)

Tidak satupun individu di dunia yang "memiliki" nama domain kecuali Network Information Centre (NIC), atau pendaftar nama domain (domain name registry). Sebagian besar dari NIC di dunia menerima biaya tahunan dari para pengguna legal dengan tujuan bagi si pengguna legal menggunakan nama domain tersebut. Jadi sejenis perjanjian sewa-menyewa terjadi, bergantung kepada syarat dan ketentuan pendaftar. Bergantung kepada beberpa peraturan penamaan dari para pendaftar, pengguna legal dikenal sebagai "pendaftar" (registrants) atau sebagai "pemegang domain" (domain holders)

ICANN memegang daftar lengkap untuk pendaftar domain di seluruh dunia. Siapapun dapat menemukan pengguna legal dari sebuah domain dengan mencari melalui basis data WHOIS yang disimpan oleh beberpa pendaftar domain.
Di (lebih kurang) 240 country code top-level domains (ccTLDs), pendaftar domain memegang sebuah acuan WHOIS (pendaftar dan nama server). Contohnya, IDNIC, NIC Indonesia, memegang informasi otorisatif WHOIS untuk nama domain .ID.

Namun, beberapa pendaftar domain, seperti VeriSign, menggunakan model pendaftar-pengguna. Untuk nama domain .COM dan .NET, pendaftar domain, VeriSign memegang informasi dasar WHOIS )pemegang domain dan server nama). Siapapun dapat mencari detil WHOIS (Pemegang domain, server nama, tanggal berlaku, dan lain sebagainya) melalui pendaftar.

Sejak sekitar 2001, kebanyakan pendaftar gTLD (.ORG, .BIZ, .INFO) telah mengadopsi metode penfatar "tebal", menyimpan otoritatif WHOIS di beberapa pendaftar dan bukan pendaftar itu saja.

Kontak Administratif (Administrative Contact)

Satu pemegang domain biasanya menunjuk kontak administratif untuk menangani nama domain. Fungsi manajemen didelegasikan ke kontak administratif yang mencakup (diantaranya):

* keharusan untuk mengikuti syarat dari pendaftar domain dengan tujuan memiliki hak untuk menggunakan nama domain
* otorisasi untuk melakukan update ke alamat fisik, alamat email dan nomor telefon dan lain sebagainya via WHOIS

Kontak Teknis (Technical Contact)

Satu kontak teknis menangani server nama dari sebuah nama domain. Beberapa dari banuak fungsi kontak teknis termasuk:

* memastikan bahwa konfigurasi dari nama domain mengikuti syarat dari pendaftar domain
* update zona domain
* menyediakan fungsi 24x7 untuk ke server nama (yang membuat nama domain bisa diakses)

Kontak Pembayaran (Billing Contact)

Tidak perlu dijelaskan, pihak ini adalah yang menerima tagihan dari NIC.

Server Nama (Name Servers)

Disebut sebagai server nama otoritatif yang mengasuh zona nama domain dari sebuah nama domain.

Politik

Banyak penyelidikan telah menyuarakan kritik dari metode yang digunakan sekarang untuk mengatur kepemilikan domain. Umumnya, kritik mengklaim penyalahgunaan dengan monopoli, seperti VeriSign Inc dan masalah-masalah dengan penunjukkan dari top-level domain (TLD). Lembaga international ICANN (Internet Corporation for Assigned Names and Numbers) memelihara industri nama domain.